DIPLOMATE EXAMINATION

FORMULAE SHEET

Term	Formula
Attributable Risk	$A R=R_{\text {exposed }}-R_{\text {unexposed }}$ where AR $=$ Attributable Risk $R_{\text {exposed }}=$ Risk in exposed group $R_{\text {unexposed }}=$ Risk in unexposed group
Attributable Risk Fraction Aetiological Fraction Etiological Fraction	$$
Vaccine Efficacy	$\begin{array}{\|l} \left\lvert\, r E=\frac{R_{\text {unvaccinated }}-R_{\text {vaccinated }}}{R_{\text {unvaccinated }}}=1-\frac{R_{\text {vaccinated }}}{R_{\text {unvaccinated }}}\right. \\ \text { where } \\ \text { VE } \quad=\text { Vaccine Efficacy } \\ R_{\text {unvaccinated }}=\text { Risk in unvaccinated group } \\ R_{\text {vaccinated }}=\text { Risk in vaccinated group } \end{array}$
Population Attributable Risk	where $\quad P A R=R_{\text {population }}-R_{\text {unexposed }}$ PAR $=$ Population Attributable Risk $R_{\text {opulation }}=$ Risk in population $R_{\text {unexposed }}=$ Risk in unexposed

Term	Formula
Population Attributable Risk Fraction	
Variance	$s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{(n-1)}$ where $s^{2}=$ Variance of sample $x_{i}=$ Individual value $\bar{x}=$ Arithmetic mean of sample $n=$ Number of items in sample
Standard Deviation	$\begin{aligned} & \qquad s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{(n-1)}} \\ & \text { where } \\ & \mathrm{s}=\text { Standard deviation of sample } \\ & x_{i}=\text { Individual value } \\ & \bar{x}=\text { Arithmetic mean of sample } \\ & n=\text { Number of items in sample } \end{aligned}$
Standard Error of the Mean	$\begin{aligned} & \qquad S E M=\sqrt{\frac{s^{2}}{n}} \\ & \qquad S E M=\frac{s}{\sqrt{n}} \\ & \text { where } \\ & \text { SEM }=\text { Standard Error of the Mean } \\ & s \quad=\text { Standard deviation of sample } \\ & n \quad=\text { Number of items in sample } \end{aligned}$

Term	Formula
Confidence Interval for an Arithmetic Mean	$\begin{aligned} & \qquad \begin{array}{l} 95 \% C I=\bar{x} \pm 1.96 \sqrt{\frac{s^{2}}{n}} \\ \text { 95\% CI }=\bar{x} \pm 1.96 \frac{s}{\sqrt{n}} \\ \text { where } \\ 95 \% \mathrm{Cl}= \\ \bar{x} \quad=\text { Arithmetic mean of sample } \\ s \quad=\text { Standard deviation of sample } \\ n \quad=\text { Number of items in sample } \end{array} \end{aligned}$
Confidence Interval for a Difference in Arithmetic Means	$\begin{array}{ll} & 95 \% C I=\left\|\bar{x}_{1}-\bar{x}_{2}\right\| \pm 1.96 \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)} \\ & 95 \% C I=\left\|\bar{x}_{1}-\bar{x}_{2}\right\| \pm 1.96 s_{p} \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\ \text { where } & \\ 95 \% \mathrm{Cl}= & 95 \% \text { Confidence Interval } \\ \bar{x}_{1} \quad & =\text { Arithmetic mean of 1st sample } \\ s_{1} & =\text { Standard deviation of 1st sample } \\ n_{1} & =\text { Number of items in 1st sample } \\ \bar{x}_{2} & =\text { Arithmetic mean of 2nd sample } \\ s_{2} & =\text { Standard deviation of 2nd sample } \\ n_{2} & =\text { Number of items in 2nd sample } \\ s_{p} \quad & \text { Pooled standard deviation of 1st \& 2nd samples } \end{array}$
Confidence Interval for a Proportion	$\begin{aligned} & \qquad 95 \% C I=\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ & \text { where } \\ & 95 \% \mathrm{Cl}=95 \% \text { Confidence Interval } \\ & \hat{p} \quad=\text { Observed proportion in sample } \\ & n \quad=\text { Number of items in sample } \end{aligned}$
Confidence Interval for a Difference in Proportions	$\begin{aligned} & \qquad 95 \% C I=\left\|\hat{p}_{1}-\hat{p}_{2}\right\| \pm 1.96 \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} \\ & \text { where } \\ & 95 \% \mathrm{Cl} \end{aligned}=\text { 95\% Confidence Interval } \quad \begin{array}{ll} \hat{p}_{1} & =\text { Observed proportion in 1st sample } \\ n_{1} & =\text { Number of items in 1st sample } \\ \hat{p}_{2} & =\text { Observed proportion in 2nd sample } \\ n_{2} & =\text { Number of items in 2nd sample } \end{array}$

Term	Formula
Confidence Interval for a Count	$\text { Approx } .95 \% \text { CI }=\text { Count } \pm 1.96 \sqrt{\text { Count }}$ where Approx. 95\% CI = Approximate 95\% Confidence Interval based on Poisson approximation to Binomial distribution Count $=$ Count of observed events
Standardised Mortality Ratio	$S M R=\frac{O}{E}$ where SMR = Standardised Mortality Ratio $O=$ Observed total number of deaths $E=$ Expected total number of deaths
Confidence Interval for a Standardised Mortality Ratio	$\text { Approx. } 95 \% C I=S M R \pm 1.96 \frac{\sqrt{0}}{E}$ where Approx. 95\% CI = Approximate 95\% Confidence Interval based on Poisson approximation to Binomial distribution SMR = Standardised Mortality Ratio $O=$ Observed total number of deaths $E=$ Expected total number of deaths
Chi-squared Statistic	$\begin{aligned} & \qquad \chi_{c}^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \\ & \text { where } \\ & \chi_{c}^{2}=\text { Chi-squared statistic with } C \text { degrees of freedom } \\ & O_{i}=\text { Observed count in each cell } \\ & E_{i}=\text { Expected count in each cell } \end{aligned}$
McNemar's Chi-squared Statistic for Matched Pairs with Binary Outcomes	$\begin{aligned} & \qquad \text { McNemar's } \chi_{1}^{2}=\frac{\left(n_{12}-n_{21}\right)^{2}}{\left(n_{12}+n_{21}\right)} \\ & \text { where } \\ & \chi_{1}^{2}=\text { Chi-squared statistic with } 1 \text { degree of freedom } \\ & n_{12}=\text { Observed count in cell for discordant values } 1 \& 2 \\ & n_{21}=\text { Observed count in cell for discordant values } 2 \& 1 \end{aligned}$

END OF DOCUMENT

