

DIPLOMATE EXAMINATION

FORMULAE SHEET

Term	Formula
Attributable Risk	$AR = R_{exposed} - R_{unexposed}$
	where
	AR = Attributable Risk
	$R_{exposed}$ = Risk in exposed group
	$R_{unexposed}$ = Risk in unexposed group
Attributable Risk Fraction	$ARF = \frac{R_{exposed} - R_{unexposed}}{R_{exposed}} = 1 - \frac{R_{unexposed}}{R_{exposed}}$
Aetiological Fraction	$R_{exposed} = R_{exposed}$
Etiological Fraction	where
	ARF = Attributable Risk Fraction
	$R_{exposed}$ = Risk in exposed group
	$R_{unexposed}$ = Risk in unexposed group
Vaccine Efficacy	$VE = \frac{R_{unvaccinated} - R_{vaccinated}}{R_{unvaccinated}} = 1 - \frac{R_{vaccinated}}{R_{unvaccinated}}$
	$R_{unvaccinated}$ $R_{unvaccinated}$ $R_{unvaccinated}$
	where
	VE = Vaccine Efficacy
	$R_{unvaccinated} = $ Risk in unvaccinated group
	$R_{vaccinated}$ = Risk in vaccinated group
Population Attributable Risk	$PAR = R_{population} - R_{unexposed}$
	where
	PAR = Population Attributable Risk
	$R_{population} = $ Risk in population
	$R_{unexposed}$ = Risk in unexposed

Term	Formula
Population Attributable Risk	$PARF = \frac{R_{population} - R_{unexposed}}{R_{population}} = 1 - \frac{R_{unexposed}}{R_{population}}$
Fraction	
	where
	PARF = Population Attributable Risk Fraction
	$R_{population}$ = Risk in population $R_{unexposed}$ = Risk in unexposed
	Runexposed – Risk in unexposed
	p(RR-1)
	$PARF = \frac{p(RR-1)}{p(RR-1)+1}$
	where
	PARF = Population Attributable Risk Fraction
	p= Prevalence of the exposure in the populationRR= Relative risk of outcome for the exposed
	<i>RR</i> = Relative risk of outcome for the exposed compared with the unexposed
Variance	$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{(n-1)}$
	(
	where
	s^2 = Variance of sample x_i = Individual value
	\bar{x} = Arithmetic mean of sample
	n = Number of items in sample
Standard Deviation	$\sum (x_i - \bar{x})^2$
	$s = \sqrt{\frac{\sum(x_i - \bar{x})^2}{(n-1)}}$
	where
	s = Standard deviation of sample
	$x_i = $ Individual value
	\bar{x} = Arithmetic mean of sample n = Number of items in sample
Standard Error of the Mean	2 ²
	$SEM = \sqrt{\frac{s^2}{n}}$
	$\sqrt{\frac{n}{s}}$
	$SEM = \frac{s}{\sqrt{n}}$
	where
	SEM = Standard Error of the Mean
	s = Standard deviation of sample
	<i>n</i> = Number of items in sample

Term	Formula
Confidence Interval for an	a ²
Arithmetic Mean	95% $CI = \bar{x} \pm 1.96 \sqrt{\frac{s^2}{n}}$ 95% $CI = \bar{x} \pm 1.96 \frac{s}{\sqrt{n}}$
	$95\% CI = \bar{x} \pm 1.96 \frac{s}{\sqrt{n}}$
	where 95% CI = 95% Confidence Interval
	\bar{x} = Arithmetic mean of sample
	s = Standard deviation of sample
	<i>n</i> = Number of items in sample
Confidence Interval for a Difference in Arithmetic Means	95% $CI = \bar{x}_1 - \bar{x}_2 \pm 1.96 \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$ 95% $CI = \bar{x}_1 - \bar{x}_2 \pm 1.96 s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$
	95% $CI = \bar{x}_1 - \bar{x}_2 \pm 1.96 s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$
	where
	95% CI = 95% Confidence Interval
	\bar{x}_1 = Arithmetic mean of 1st sample s_1 = Standard deviation of 1st sample
	n_1 = Number of items in 1st sample
	\bar{x}_2 = Arithmetic mean of 2nd sample
	s_2 = Standard deviation of 2nd sample
	n_2 = Number of items in 2nd sample
	s_p = Pooled standard deviation of 1st & 2nd samples
Confidence Interval for a Proportion	95% $CI = \hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
	where 95% CI = 95% Confidence Interval
	\hat{p} = Observed proportion in sample
	n = Number of items in sample
Confidence Interval for a Difference in Proportions	95% $CI = \hat{p}_1 - \hat{p}_2 \pm 1.96 \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
	where 95% CI = 95% Confidence Interval
	\hat{p}_1 = Observed proportion in 1st sample
	n_1 = Number of items in 1st sample
	\hat{p}_2 = Observed proportion in 2nd sample
	n_2 = Number of items in 2nd sample

Term	Formula
Confidence Interval for a Count	Approx. 95% $CI = Count \pm 1.96 \sqrt{Count}$ where Approx. 95% $CI =$ Approximate 95% Confidence Interval based on Poisson approximation to Binomial distribution Count = Count of observed events
Standardised Mortality Ratio	$SMR = \frac{O}{E}$ where $SMR = \text{Standardised Mortality Ratio}$ $O = \text{Observed total number of deaths}$ $E = \text{Expected total number of deaths}$
Confidence Interval for a Standardised Mortality Ratio	Approx. 95% $CI = SMR \pm 1.96 \frac{\sqrt{O}}{E}$ where Approx. 95% $CI =$ Approximate 95% Confidence Interval based on Poisson approximation to Binomial distribution SMR = Standardised Mortality Ratio O = Observed total number of deaths E = Expected total number of deaths
Chi-squared Statistic	$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$ where χ_c^2 = Chi-squared statistic with <i>C</i> degrees of freedom O_i = Observed count in each cell E_i = Expected count in each cell
McNemar's Chi-squared Statistic for Matched Pairs with Binary Outcomes	$McNemar's \chi_1^2 = \frac{(n_{12} - n_{21})^2}{(n_{12} + n_{21})}$ where χ_1^2 = Chi-squared statistic with 1 degree of freedom n_{12} = Observed count in cell for discordant values 1 & 2 n_{21} = Observed count in cell for discordant values 2 & 1

END OF DOCUMENT